0036-有效的数独
请你判断一个 9 x 9
的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。
- 数字
1-9
在每一行只能出现一次。 - 数字
1-9
在每一列只能出现一次。 - 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。(请参考示例图)
注意:
- 一个有效的数独(部分已被填充)不一定是可解的。
- 只需要根据以上规则,验证已经填入的数字是否有效即可。
- 空白格用
'.'
表示。
示例 1:
![](https://assets.leetcode-cn.com/aliyun-lc-upload/uploads/2021/04/12/250px-
sudoku-by-l2g-20050714svg.png)
**输入:** board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
**输出:** true
示例 2:
**输入:** board =
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
**输出:** false
**解释:** 除了第一行的第一个数字从 **5** 改为 **8** 以外,空格内其他数字均与 示例1 相同。 但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。
提示:
board.length == 9
board[i].length == 9
board[i][j]
是一位数字(1-9
)或者'.'
方法一:一次遍历
有效的数独满足以下三个条件:
同一个数字在每一行只能出现一次;
同一个数字在每一列只能出现一次;
同一个数字在每一个小九宫格只能出现一次。
可以使用哈希表记录每一行、每一列和每一个小九宫格中,每个数字出现的次数。只需要遍历数独一次,在遍历的过程中更新哈希表中的计数,并判断是否满足有效的数独的条件即可。
对于数独的第 $i$ 行第 $j$ 列的单元格,其中 $0 \le i, j < 9$,该单元格所在的行下标和列下标分别为 $i$ 和 $j$,该单元格所在的小九宫格的行数和列数分别为 $\Big\lfloor \dfrac{i}{3} \Big\rfloor$ 和 $\Big\lfloor \dfrac{j}{3} \Big\rfloor$,其中 $0 \le \Big\lfloor \dfrac{i}{3} \Big\rfloor, \Big\lfloor \dfrac{j}{3} \Big\rfloor < 3$。
由于数独中的数字范围是 $1$ 到 $9$,因此可以使用数组代替哈希表进行计数。
具体做法是,创建二维数组 $\textit{rows}$ 和 $\textit{columns}$ 分别记录数独的每一行和每一列中的每个数字的出现次数,创建三维数组 $\textit{subboxes}$ 记录数独的每一个小九宫格中的每个数字的出现次数,其中 $\textit{rows}[i][\textit{index}]$、$\textit{columns}[j][\textit{index}]$ 和 $\textit{subboxes}\Big[\Big\lfloor \dfrac{i}{3} \Big\rfloor\Big]\Big[\Big\lfloor \dfrac{j}{3} \Big\rfloor\Big]\Big[\textit{index}\Big]$ 分别表示数独的第 $i$ 行第 $j$ 列的单元格所在的行、列和小九宫格中,数字 $\textit{index} + 1$ 出现的次数,其中 $0 \le \textit{index} < 9$,对应的数字 $\textit{index} + 1$ 满足 $1 \le \textit{index} + 1 \le 9$。
如果 $\textit{board}[i][j]$ 填入了数字 $n$,则将 $\textit{rows}[i][n - 1]$、$\textit{columns}[j][n - 1]$ 和 $\textit{subboxes}\Big[\Big\lfloor \dfrac{i}{3} \Big\rfloor\Big]\Big[\Big\lfloor \dfrac{j}{3} \Big\rfloor\Big]\Big[n - 1\Big]$ 各加 $1$。如果更新后的计数大于 $1$,则不符合有效的数独的条件,返回 $\text{false}$。
如果遍历结束之后没有出现计数大于 $1$ 的情况,则符合有效的数独的条件,返回 $\text{true}$。
1 | class Solution { |
1 | public class Solution { |
1 | var isValidSudoku = function(board) { |
1 | class Solution { |
1 | func isValidSudoku(board [][]byte) bool { |
复杂度分析
时间复杂度:$O(1)$。数独共有 $81$ 个单元格,只需要对每个单元格遍历一次即可。
空间复杂度:$O(1)$。由于数独的大小固定,因此哈希表的空间也是固定的。