请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push
、pop
、peek
、empty
):
实现 MyQueue
类:
void push(int x)
将元素 x 推到队列的末尾
int pop()
从队列的开头移除并返回元素
int peek()
返回队列开头的元素
boolean empty()
如果队列为空,返回 true
;否则,返回 false
说明:
- 你 只能 使用标准的栈操作 —— 也就是只有
push to top
, peek/pop from top
, size
, 和 is empty
操作是合法的。
- 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
示例 1:
**输入:**
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
**输出:**
[null, null, null, 1, 1, false]
**解释:**
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
提示:
1 <= x <= 9
- 最多调用
100
次 push
、pop
、peek
和 empty
- 假设所有操作都是有效的 (例如,一个空的队列不会调用
pop
或者 peek
操作)
进阶:
- 你能否实现每个操作均摊时间复杂度为
O(1)
的队列?换句话说,执行 n
个操作的总时间复杂度为 O(n)
,即使其中一个操作可能花费较长时间。
方法一:双栈
思路
将一个栈当作输入栈,用于压入 $\texttt{push}$ 传入的数据;另一个栈当作输出栈,用于 $\texttt{pop}$ 和 $\texttt{peek}$ 操作。
每次 $\texttt{pop}$ 或 $\texttt{peek}$ 时,若输出栈为空则将输入栈的全部数据依次弹出并压入输出栈,这样输出栈从栈顶往栈底的顺序就是队列从队首往队尾的顺序。
代码
[sol1-C++]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
| class MyQueue { private: stack<int> inStack, outStack;
void in2out() { while (!inStack.empty()) { outStack.push(inStack.top()); inStack.pop(); } }
public: MyQueue() {}
void push(int x) { inStack.push(x); }
int pop() { if (outStack.empty()) { in2out(); } int x = outStack.top(); outStack.pop(); return x; }
int peek() { if (outStack.empty()) { in2out(); } return outStack.top(); }
bool empty() { return inStack.empty() && outStack.empty(); } };
|
[sol1-Java]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
| class MyQueue { Deque<Integer> inStack; Deque<Integer> outStack;
public MyQueue() { inStack = new ArrayDeque<Integer>(); outStack = new ArrayDeque<Integer>(); }
public void push(int x) { inStack.push(x); }
public int pop() { if (outStack.isEmpty()) { in2out(); } return outStack.pop(); }
public int peek() { if (outStack.isEmpty()) { in2out(); } return outStack.peek(); }
public boolean empty() { return inStack.isEmpty() && outStack.isEmpty(); }
private void in2out() { while (!inStack.isEmpty()) { outStack.push(inStack.pop()); } } }
|
[sol1-C#]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
| public class MyQueue { Stack<int> inStack; Stack<int> outStack;
public MyQueue() { inStack = new Stack<int>(); outStack = new Stack<int>(); }
public void Push(int x) { inStack.Push(x); }
public int Pop() { if (outStack.Count == 0) { In2Out(); } return outStack.Pop(); }
public int Peek() { if (outStack.Count == 0) { In2Out(); } return outStack.Peek(); }
public bool Empty() { return inStack.Count == 0 && outStack.Count == 0; }
private void In2Out() { while (inStack.Count > 0) { outStack.Push(inStack.Pop()); } } }
|
[sol1-Golang]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
| type MyQueue struct { inStack, outStack []int }
func Constructor() MyQueue { return MyQueue{} }
func (q *MyQueue) Push(x int) { q.inStack = append(q.inStack, x) }
func (q *MyQueue) in2out() { for len(q.inStack) > 0 { q.outStack = append(q.outStack, q.inStack[len(q.inStack)-1]) q.inStack = q.inStack[:len(q.inStack)-1] } }
func (q *MyQueue) Pop() int { if len(q.outStack) == 0 { q.in2out() } x := q.outStack[len(q.outStack)-1] q.outStack = q.outStack[:len(q.outStack)-1] return x }
func (q *MyQueue) Peek() int { if len(q.outStack) == 0 { q.in2out() } return q.outStack[len(q.outStack)-1] }
func (q *MyQueue) Empty() bool { return len(q.inStack) == 0 && len(q.outStack) == 0 }
|
[sol1-JavaScript]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
| var MyQueue = function() { this.inStack = []; this.outStack = []; };
MyQueue.prototype.push = function(x) { this.inStack.push(x); };
MyQueue.prototype.pop = function() { if (!this.outStack.length) { this.in2out(); } return this.outStack.pop(); };
MyQueue.prototype.peek = function() { if (!this.outStack.length) { this.in2out(); } return this.outStack[this.outStack.length - 1]; };
MyQueue.prototype.empty = function() { return this.outStack.length === 0 && this.inStack.length === 0; };
MyQueue.prototype.in2out = function() { while (this.inStack.length) { this.outStack.push(this.inStack.pop()); } };
|
[sol1-C]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
| typedef struct { int* stk; int stkSize; int stkCapacity; } Stack;
Stack* stackCreate(int cpacity) { Stack* ret = malloc(sizeof(Stack)); ret->stk = malloc(sizeof(int) * cpacity); ret->stkSize = 0; ret->stkCapacity = cpacity; return ret; }
void stackPush(Stack* obj, int x) { obj->stk[obj->stkSize++] = x; }
void stackPop(Stack* obj) { obj->stkSize--; }
int stackTop(Stack* obj) { return obj->stk[obj->stkSize - 1]; }
bool stackEmpty(Stack* obj) { return obj->stkSize == 0; }
void stackFree(Stack* obj) { free(obj->stk); }
typedef struct { Stack* inStack; Stack* outStack; } MyQueue;
MyQueue* myQueueCreate() { MyQueue* ret = malloc(sizeof(MyQueue)); ret->inStack = stackCreate(100); ret->outStack = stackCreate(100); return ret; }
void in2out(MyQueue* obj) { while (!stackEmpty(obj->inStack)) { stackPush(obj->outStack, stackTop(obj->inStack)); stackPop(obj->inStack); } }
void myQueuePush(MyQueue* obj, int x) { stackPush(obj->inStack, x); }
int myQueuePop(MyQueue* obj) { if (stackEmpty(obj->outStack)) { in2out(obj); } int x = stackTop(obj->outStack); stackPop(obj->outStack); return x; }
int myQueuePeek(MyQueue* obj) { if (stackEmpty(obj->outStack)) { in2out(obj); } return stackTop(obj->outStack); }
bool myQueueEmpty(MyQueue* obj) { return stackEmpty(obj->inStack) && stackEmpty(obj->outStack); }
void myQueueFree(MyQueue* obj) { stackFree(obj->inStack); stackFree(obj->outStack); }
|
复杂度分析
时间复杂度:$\texttt{push}$ 和 $\texttt{empty}$ 为 $O(1)$,$\texttt{pop}$ 和 $\texttt{peek}$ 为均摊 $O(1)$。对于每个元素,至多入栈和出栈各两次,故均摊复杂度为 $O(1)$。
空间复杂度:$O(n)$。其中 $n$ 是操作总数。对于有 $n$ 次 $\texttt{push}$ 操作的情况,队列中会有 $n$ 个元素,故空间复杂度为 $O(n)$。