0232-用栈实现队列

Raphael Liu Lv10

请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(pushpoppeekempty):

实现 MyQueue 类:

  • void push(int x) 将元素 x 推到队列的末尾
  • int pop() 从队列的开头移除并返回元素
  • int peek() 返回队列开头的元素
  • boolean empty() 如果队列为空,返回 true ;否则,返回 false

说明:

  • 只能 使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
  • 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。

示例 1:

**输入:**
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
**输出:**
[null, null, null, 1, 1, false]

**解释:**
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false

提示:

  • 1 <= x <= 9
  • 最多调用 100pushpoppeekempty
  • 假设所有操作都是有效的 (例如,一个空的队列不会调用 pop 或者 peek 操作)

进阶:

  • 你能否实现每个操作均摊时间复杂度为 O(1) 的队列?换句话说,执行 n 个操作的总时间复杂度为 O(n) ,即使其中一个操作可能花费较长时间。

方法一:双栈

思路

将一个栈当作输入栈,用于压入 $\texttt{push}$ 传入的数据;另一个栈当作输出栈,用于 $\texttt{pop}$ 和 $\texttt{peek}$ 操作。

每次 $\texttt{pop}$ 或 $\texttt{peek}$ 时,若输出栈为空则将输入栈的全部数据依次弹出并压入输出栈,这样输出栈从栈顶往栈底的顺序就是队列从队首往队尾的顺序。

代码

[sol1-C++]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class MyQueue {
private:
stack<int> inStack, outStack;

void in2out() {
while (!inStack.empty()) {
outStack.push(inStack.top());
inStack.pop();
}
}

public:
MyQueue() {}

void push(int x) {
inStack.push(x);
}

int pop() {
if (outStack.empty()) {
in2out();
}
int x = outStack.top();
outStack.pop();
return x;
}

int peek() {
if (outStack.empty()) {
in2out();
}
return outStack.top();
}

bool empty() {
return inStack.empty() && outStack.empty();
}
};
[sol1-Java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class MyQueue {
Deque<Integer> inStack;
Deque<Integer> outStack;

public MyQueue() {
inStack = new ArrayDeque<Integer>();
outStack = new ArrayDeque<Integer>();
}

public void push(int x) {
inStack.push(x);
}

public int pop() {
if (outStack.isEmpty()) {
in2out();
}
return outStack.pop();
}

public int peek() {
if (outStack.isEmpty()) {
in2out();
}
return outStack.peek();
}

public boolean empty() {
return inStack.isEmpty() && outStack.isEmpty();
}

private void in2out() {
while (!inStack.isEmpty()) {
outStack.push(inStack.pop());
}
}
}
[sol1-C#]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public class MyQueue {
Stack<int> inStack;
Stack<int> outStack;

public MyQueue() {
inStack = new Stack<int>();
outStack = new Stack<int>();
}

public void Push(int x) {
inStack.Push(x);
}

public int Pop() {
if (outStack.Count == 0) {
In2Out();
}
return outStack.Pop();
}

public int Peek() {
if (outStack.Count == 0) {
In2Out();
}
return outStack.Peek();
}

public bool Empty() {
return inStack.Count == 0 && outStack.Count == 0;
}

private void In2Out() {
while (inStack.Count > 0) {
outStack.Push(inStack.Pop());
}
}
}
[sol1-Golang]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
type MyQueue struct {
inStack, outStack []int
}

func Constructor() MyQueue {
return MyQueue{}
}

func (q *MyQueue) Push(x int) {
q.inStack = append(q.inStack, x)
}

func (q *MyQueue) in2out() {
for len(q.inStack) > 0 {
q.outStack = append(q.outStack, q.inStack[len(q.inStack)-1])
q.inStack = q.inStack[:len(q.inStack)-1]
}
}

func (q *MyQueue) Pop() int {
if len(q.outStack) == 0 {
q.in2out()
}
x := q.outStack[len(q.outStack)-1]
q.outStack = q.outStack[:len(q.outStack)-1]
return x
}

func (q *MyQueue) Peek() int {
if len(q.outStack) == 0 {
q.in2out()
}
return q.outStack[len(q.outStack)-1]
}

func (q *MyQueue) Empty() bool {
return len(q.inStack) == 0 && len(q.outStack) == 0
}
[sol1-JavaScript]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
var MyQueue = function() {
this.inStack = [];
this.outStack = [];
};

MyQueue.prototype.push = function(x) {
this.inStack.push(x);
};

MyQueue.prototype.pop = function() {
if (!this.outStack.length) {
this.in2out();
}
return this.outStack.pop();
};

MyQueue.prototype.peek = function() {
if (!this.outStack.length) {
this.in2out();
}
return this.outStack[this.outStack.length - 1];
};

MyQueue.prototype.empty = function() {
return this.outStack.length === 0 && this.inStack.length === 0;
};

MyQueue.prototype.in2out = function() {
while (this.inStack.length) {
this.outStack.push(this.inStack.pop());
}
};
[sol1-C]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
typedef struct {
int* stk;
int stkSize;
int stkCapacity;
} Stack;

Stack* stackCreate(int cpacity) {
Stack* ret = malloc(sizeof(Stack));
ret->stk = malloc(sizeof(int) * cpacity);
ret->stkSize = 0;
ret->stkCapacity = cpacity;
return ret;
}

void stackPush(Stack* obj, int x) {
obj->stk[obj->stkSize++] = x;
}

void stackPop(Stack* obj) {
obj->stkSize--;
}

int stackTop(Stack* obj) {
return obj->stk[obj->stkSize - 1];
}

bool stackEmpty(Stack* obj) {
return obj->stkSize == 0;
}

void stackFree(Stack* obj) {
free(obj->stk);
}

typedef struct {
Stack* inStack;
Stack* outStack;
} MyQueue;

MyQueue* myQueueCreate() {
MyQueue* ret = malloc(sizeof(MyQueue));
ret->inStack = stackCreate(100);
ret->outStack = stackCreate(100);
return ret;
}

void in2out(MyQueue* obj) {
while (!stackEmpty(obj->inStack)) {
stackPush(obj->outStack, stackTop(obj->inStack));
stackPop(obj->inStack);
}
}

void myQueuePush(MyQueue* obj, int x) {
stackPush(obj->inStack, x);
}

int myQueuePop(MyQueue* obj) {
if (stackEmpty(obj->outStack)) {
in2out(obj);
}
int x = stackTop(obj->outStack);
stackPop(obj->outStack);
return x;
}

int myQueuePeek(MyQueue* obj) {
if (stackEmpty(obj->outStack)) {
in2out(obj);
}
return stackTop(obj->outStack);
}

bool myQueueEmpty(MyQueue* obj) {
return stackEmpty(obj->inStack) && stackEmpty(obj->outStack);
}

void myQueueFree(MyQueue* obj) {
stackFree(obj->inStack);
stackFree(obj->outStack);
}

复杂度分析

  • 时间复杂度:$\texttt{push}$ 和 $\texttt{empty}$ 为 $O(1)$,$\texttt{pop}$ 和 $\texttt{peek}$ 为均摊 $O(1)$。对于每个元素,至多入栈和出栈各两次,故均摊复杂度为 $O(1)$。

  • 空间复杂度:$O(n)$。其中 $n$ 是操作总数。对于有 $n$ 次 $\texttt{push}$ 操作的情况,队列中会有 $n$ 个元素,故空间复杂度为 $O(n)$。

 Comments
On this page
0232-用栈实现队列