0543-二叉树的直径

Raphael Liu Lv10

给你一棵二叉树的根节点,返回该树的 直径

二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也可能不经过根节点 root

两节点之间路径的 长度 由它们之间边数表示。

示例 1:

**输入:** root = [1,2,3,4,5]
**输出:** 3
**解释:** 3 ,取路径 [4,2,1,3] 或 [5,2,1,3] 的长度。

示例 2:

**输入:** root = [1,2]
**输出:** 1

提示:

  • 树中节点数目在范围 [1, 104]
  • -100 <= Node.val <= 100

📺 视频题解

543.二叉树大直径.mp4

📖 文字题解

方法一:深度优先搜索

首先我们知道一条路径的长度为该路径经过的节点数减一,所以求直径(即求路径长度的最大值)等效于求路径经过节点数的最大值减一。

而任意一条路径均可以被看作由某个节点为起点,从其左儿子和右儿子向下遍历的路径拼接得到。

543.jpg

如图我们可以知道路径 [9, 4, 2, 5, 7, 8] 可以被看作以 2 为起点,从其左儿子向下遍历的路径 [2, 4, 9] 和从其右儿子向下遍历的路径 [2, 5, 7, 8] 拼接得到。

假设我们知道对于该节点的左儿子向下遍历经过最多的节点数 L (即以左儿子为根的子树的深度) 和其右儿子向下遍历经过最多的节点数 R (即以右儿子为根的子树的深度),那么以该节点为起点的路径经过节点数的最大值即为 L+R+1 。

我们记节点 node 为起点的路径经过节点数的最大值为 d_{\textit{node} ,那么二叉树的直径就是所有节点 d_{\textit{node} 的最大值减一。

最后的算法流程为:我们定义一个递归函数 depth(node) 计算 d_{\textit{node} ,函数返回该节点为根的子树的深度。先递归调用左儿子和右儿子求得它们为根的子树的深度 L 和 R ,则该节点为根的子树的深度即为

max(L,R)+1

该节点的 d_{\textit{node} 值为

L+R+1

递归搜索每个节点并设一个全局变量 ans 记录 d_\textit{node 的最大值,最后返回 ans-1 即为树的直径。

[sol1-Python3]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution:
def diameterOfBinaryTree(self, root: TreeNode) -> int:
self.ans = 1
def depth(node):
# 访问到空节点了,返回0
if not node:
return 0
# 左儿子为根的子树的深度
L = depth(node.left)
# 右儿子为根的子树的深度
R = depth(node.right)
# 计算d_node即L+R+1 并更新ans
self.ans = max(self.ans, L + R + 1)
# 返回该节点为根的子树的深度
return max(L, R) + 1

depth(root)
return self.ans - 1
[sol1-Java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
int ans;
public int diameterOfBinaryTree(TreeNode root) {
ans = 1;
depth(root);
return ans - 1;
}
public int depth(TreeNode node) {
if (node == null) {
return 0; // 访问到空节点了,返回0
}
int L = depth(node.left); // 左儿子为根的子树的深度
int R = depth(node.right); // 右儿子为根的子树的深度
ans = Math.max(ans, L+R+1); // 计算d_node即L+R+1 并更新ans
return Math.max(L, R) + 1; // 返回该节点为根的子树的深度
}
}
[sol1-C++]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
int ans;
int depth(TreeNode* rt){
if (rt == NULL) {
return 0; // 访问到空节点了,返回0
}
int L = depth(rt->left); // 左儿子为根的子树的深度
int R = depth(rt->right); // 右儿子为根的子树的深度
ans = max(ans, L + R + 1); // 计算d_node即L+R+1 并更新ans
return max(L, R) + 1; // 返回该节点为根的子树的深度
}
public:
int diameterOfBinaryTree(TreeNode* root) {
ans = 1;
depth(root);
return ans - 1;
}
};

复杂度分析

  • 时间复杂度:O(N),其中 N 为二叉树的节点数,即遍历一棵二叉树的时间复杂度,每个结点只被访问一次。

  • 空间复杂度:O(Height),其中 Height 为二叉树的高度。由于递归函数在递归过程中需要为每一层递归函数分配栈空间,所以这里需要额外的空间且该空间取决于递归的深度,而递归的深度显然为二叉树的高度,并且每次递归调用的函数里又只用了常数个变量,所以所需空间复杂度为 O(Height) 。

 Comments
On this page
0543-二叉树的直径