0823-带因子的二叉树

Raphael Liu Lv10

给出一个含有不重复整数元素的数组 arr ,每个整数 arr[i] 均大于 1。

用这些整数来构建二叉树,每个整数可以使用任意次数。其中:每个非叶结点的值应等于它的两个子结点的值的乘积。

满足条件的二叉树一共有多少个?答案可能很大,返回 109 + 7 取余 的结果。

示例 1:

**输入:** arr = [2, 4]
**输出:** 3
**解释:** 可以得到这些二叉树: [2], [4], [4, 2, 2]

示例 2:

**输入:** arr = [2, 4, 5, 10]
**输出:** 7
**解释:** 可以得到这些二叉树: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].

提示:

  • 1 <= arr.length <= 1000
  • 2 <= arr[i] <= 109
  • arr 中的所有值 互不相同

方法一:动态规划 + 双指针

因为每个整数 arr}[i] 均大于 1,因此每个非叶结点的值都大于它的子结点的值。考虑以 arr}[i] 为根结点的带因子的二叉树,那么它的所有子孙结点的值都小于 arr}[i]。我们将 arr 从小到大进行排序,那么对于以 arr}[i] 为根结点的带因子的二叉树,它的子孙结点值的下标只能在区间 [0, i - 1) 中。
使用 dp}[i] 保存以 arr}[i] 为根结点的带因子的二叉树数目。我们从区间 [0, i - 1) 内枚举 arr}[i] 的子结点,假设存在 0 \le \textit{left} \le \textit{right} \lt i,使 arr}[\textit{left}] \times \textit{arr}[\textit{right}] = \textit{arr}[i] 成立,那么 arr}[\textit{left}] 和 arr}[\textit{right}] 可以作为 arr}[i] 的两个子结点。同时 arr}[\textit{left}] 和 arr}[\textit{right}] 为根结点的带因子二叉树数目分别为 dp}[\textit{left}] 和 dp}[\textit{right}],不难推导出 arr}[\textit{left}] 和 arr}[\textit{right}] 作为 arr}[i] 的两个子结点时,带因子二叉树数目 s 为:

  • left} = \textit{right 时,s = \textit{dp}[\textit{left}] \times \textit{dp}[\textit{right}]

  • left} \ne \textit{right 时,因为两个子结点可以交换,所以 s = \textit{dp}[\textit{left}] \times \textit{dp}[\textit{right}] \times 2

当 arr}[i] 没有子结点时,对应 1 个带因子二叉树。因此,状态转移方程为:

\textit{dp}[i] = 1 + \sum_{(\textit{left}, \textit{right}) \in U} \textit{dp}[\textit{left}] \times \textit{dp}[\textit{right}] \times (1 + f(\textit{left}, \textit{right}))

其中 (\textit{left}, \textit{right}) \in U 表示所有满足 0 \le \textit{left} \le \textit{right} \lt i 且 arr}[\textit{left}] \times \textit{arr}[\textit{right}] = \textit{arr}[i] 的下标对 (\textit{left}, \textit{right}),而 f(\textit{left}, \textit{right}) 的取值为当 left} = \textit{right 时,值为 0,否则值为 1(因为 left} \ne \textit{right 时,两个子结点可以交换)。

找出 (\textit{left}, \textit{right}) \in U 的所有 (\textit{left}, \textit{right}) 可以使用双指针进行查找。

[sol1-C++]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
int numFactoredBinaryTrees(vector<int>& arr) {
sort(arr.begin(), arr.end());
int n = arr.size();
vector<long long> dp(n);
long long res = 0, mod = 1e9 + 7;
for (int i = 0; i < n; i++) {
dp[i] = 1;
for (int left = 0, right = i - 1; left <= right; left++) {
while (right >= left && (long long)arr[left] * arr[right] > arr[i]) {
right--;
}
if (right >= left && (long long)arr[left] * arr[right] == arr[i]) {
if (right != left) {
dp[i] = (dp[i] + dp[left] * dp[right] * 2) % mod;
} else {
dp[i] = (dp[i] + dp[left] * dp[right]) % mod;
}
}
}
res = (res + dp[i]) % mod;
}
return res;
}
};
[sol1-Java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public int numFactoredBinaryTrees(int[] arr) {
Arrays.sort(arr);
int n = arr.length;
long[] dp = new long[n];
long res = 0, mod = 1000000007;
for (int i = 0; i < n; i++) {
dp[i] = 1;
for (int left = 0, right = i - 1; left <= right; left++) {
while (right >= left && (long) arr[left] * arr[right] > arr[i]) {
right--;
}
if (right >= left && (long) arr[left] * arr[right] == arr[i]) {
if (right != left) {
dp[i] = (dp[i] + dp[left] * dp[right] * 2) % mod;
} else {
dp[i] = (dp[i] + dp[left] * dp[right]) % mod;
}
}
}
res = (res + dp[i]) % mod;
}
return (int) res;
}
}
[sol1-C#]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public class Solution {
public int NumFactoredBinaryTrees(int[] arr) {
Array.Sort(arr);
int n = arr.Length;
long[] dp = new long[n];
long res = 0, mod = 1000000007;
for (int i = 0; i < n; i++) {
dp[i] = 1;
for (int left = 0, right = i - 1; left <= right; left++) {
while (right >= left && (long) arr[left] * arr[right] > arr[i]) {
right--;
}
if (right >= left && (long) arr[left] * arr[right] == arr[i]) {
if (right != left) {
dp[i] = (dp[i] + dp[left] * dp[right] * 2) % mod;
} else {
dp[i] = (dp[i] + dp[left] * dp[right]) % mod;
}
}
}
res = (res + dp[i]) % mod;
}
return (int) res;
}
}
[sol1-Golang]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
func numFactoredBinaryTrees(arr []int) int {
sort.Ints(arr)
dp := make([]int64, len(arr))
res, mod := int64(0), int64(1e9 + 7)
for i := 0; i < len(arr); i++ {
dp[i] = 1
for left, right := 0, i - 1; left <= right; left++ {
for left <= right && int64(arr[left]) * int64(arr[right]) > int64(arr[i]) {
right--
}
if left <= right && int64(arr[left]) * int64(arr[right]) == int64(arr[i]) {
if left == right {
dp[i] = (dp[i] + dp[left] * dp[right]) % mod
} else {
dp[i] = (dp[i] + dp[left] * dp[right] * 2) % mod
}
}
}
res = (res + dp[i]) % mod
}
return int(res)
}
[sol1-C]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
int cmp(const void *p1, const void *p2) {
return *(int *)p1 - *(int *)p2;
}

int numFactoredBinaryTrees(int *arr, int arrSize){
qsort(arr, arrSize, sizeof(int), cmp);
long long *dp = (long long *)malloc(arrSize * sizeof(long long));
long long res = 0, mod = 1e9 + 7;
for (int i = 0; i < arrSize; i++) {
dp[i] = 1;
for (int left = 0, right = i - 1; left <= right; left++) {
while (left <= right && (long long)arr[left] * arr[right] > arr[i]) {
right--;
}
if (left <= right && (long long)arr[left] * arr[right] == arr[i]) {
if (left == right) {
dp[i] = (dp[i] + dp[left] * dp[right]) % mod;
} else {
dp[i] = (dp[i] + dp[left] * dp[right] * 2) % mod;
}
}
}
res = (res + dp[i]) % mod;
}
return res;
}
[sol1-Python3]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution:
def numFactoredBinaryTrees(self, arr: List[int]) -> int:
n = len(arr)
arr = sorted(arr)
dp = [1] * n
res, mod = 0, 10**9 + 7
for i in range(n):
left, right = 0, i - 1
while left <= right:
while right >= left and arr[left] * arr[right] > arr[i]:
right -= 1
if right >= left and arr[left] * arr[right] == arr[i]:
if right != left:
dp[i] = (dp[i] + dp[left] * dp[right] * 2) % mod
else:
dp[i] = (dp[i] + dp[left] * dp[right]) % mod
left += 1
res = (res + dp[i]) % mod
return res
[sol1-JavaScript]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
var numFactoredBinaryTrees = function(arr) {
const n = arr.length;
const mod = 1e9 + 7;
const dp = new Array(n).fill(1)
arr.sort((a, b) => a - b);
let res = 0;
for (let i = 0; i < n; i++) {
for (let left = 0, right = i - 1; left <= right; left++) {
while (right >= left && arr[left] * arr[right] > arr[i]) {
right--;
}
if (right >= left && arr[left] * arr[right] == arr[i]) {
if (right != left) {
dp[i] = (dp[i] + dp[left] * dp[right] * 2) % mod;
} else {
dp[i] = (dp[i] + dp[left] * dp[right]) % mod;
}
}
}
res = (res + dp[i]) % mod;
}
return res;
};

复杂度分析

  • 时间复杂度:O(n^2),其中 n 是数组 arr 的长度。双指针找两个子结点需要 O(n),总时间复杂度为 O(n^2)。

  • 空间复杂度:O(n)。保存动态规划的状态需要 O(n)。

 Comments