给定一个非负整数数组 A
,如果该数组每对相邻元素之和是一个完全平方数,则称这一数组为 正方形 数组。
返回 A 的正方形排列的数目。两个排列 A1
和 A2
不同的充要条件是存在某个索引 i
,使得 A1[i] != A2[i]。
示例 1:
**输入:** [1,17,8]
**输出:** 2
**解释:**
[1,8,17] 和 [17,8,1] 都是有效的排列。
示例 2:
**输入:** [2,2,2]
**输出:** 1
提示:
1 <= A.length <= 12
0 <= A[i] <= 1e9
方法一:回溯
思路
构造一张图,包含所有的边 i 到 j ,如果满足 A[i] + A[j] 是一个完全平方数。我们的目标就是求这张图的所有哈密顿路径,即经过图中所有点仅一次的路径。
算法
我们使用 count
记录对于每一种值还有多少个节点等待被访问,与一个变量 todo
记录还剩多少个节点等待被访问。
对于每一个节点,我们可以访问它的所有邻居节点(从数值的角度来看,从而大大减少复杂度)。
对于每一个节点,我们可以访问它的所有邻居节点(从数值的角度来看,从而大大减少复杂度)。
更多细节请看行内注释。
[mQV43TKa-Java]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
| class Solution { Map<Integer, Integer> count; Map<Integer, List<Integer>> graph; public int numSquarefulPerms(int[] A) { int N = A.length; count = new HashMap(); graph = new HashMap();
for (int x: A) count.put(x, count.getOrDefault(x, 0) + 1);
for (int x: count.keySet()) graph.put(x, new ArrayList());
for (int x: count.keySet()) for (int y: count.keySet()) { int r = (int) (Math.sqrt(x + y) + 0.5); if (r * r == x + y) graph.get(x).add(y); }
int ans = 0; for (int x: count.keySet()) ans += dfs(x, N - 1); return ans; }
public int dfs(int x, int todo) { count.put(x, count.get(x) - 1); int ans = 1; if (todo != 0) { ans = 0; for (int y: graph.get(x)) if (count.get(y) != 0) { ans += dfs(y, todo - 1); } } count.put(x, count.get(x) + 1); return ans; } }
|
[mQV43TKa-Python]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| class Solution(object): def numSquarefulPerms(self, A): N = len(A) count = collections.Counter(A)
graph = {x: [] for x in count} for x in count: for y in count: if int((x+y)**.5 + 0.5) ** 2 == x+y: graph[x].append(y)
def dfs(x, todo): count[x] -= 1 if todo == 0: ans = 1 else: ans = 0 for y in graph[x]: if count[y]: ans += dfs(y, todo - 1) count[x] += 1 return ans
return sum(dfs(x, len(A) - 1) for x in count)
|
复杂度分析
方法二:动态规划
思路
与 方法一 中相似,构造一样的图。因为节点的数量非常少,所以可以使用掩码标记所有已经过点的方式来进行动态规划。
算法
我们用同样的方式构造与 方法一 中一样的图。
现在,我们令 dfs(node, visited)
等于从 node
节点出发访问剩余的节点的可行方法数。这里,visited
是一个掩码:(visited >> i) & 1
为真,当且仅当第 i
个节点已经被访问过了。
这样计算之后,对于 A 中拥有相同值的节点我们会重复计算。考虑这个因素,对于 A
中的值 x
,如果 A
中包含 k
个值为 x
的节点,我们令最终答案除以 k!
。
[DcJoGw67-Java]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
| class Solution { int N; Map<Integer, List<Integer>> graph; Integer[][] memo;
public int numSquarefulPerms(int[] A) { N = A.length; graph = new HashMap(); memo = new Integer[N][1 << N];
for (int i = 0; i < N; ++i) graph.put(i, new ArrayList());
for (int i = 0; i < N; ++i) for (int j = i+1; j < N; ++j) { int r = (int) (Math.sqrt(A[i] + A[j]) + 0.5); if (r * r == A[i] + A[j]) { graph.get(i).add(j); graph.get(j).add(i); } }
int[] factorial = new int[20]; factorial[0] = 1; for (int i = 1; i < 20; ++i) factorial[i] = i * factorial[i-1];
int ans = 0; for (int i = 0; i < N; ++i) ans += dfs(i, 1 << i);
Map<Integer, Integer> count = new HashMap(); for (int x: A) count.put(x, count.getOrDefault(x, 0) + 1); for (int v: count.values()) ans /= factorial[v];
return ans; }
public int dfs(int node, int visited) { if (visited == (1 << N) - 1) return 1; if (memo[node][visited] != null) return memo[node][visited];
int ans = 0; for (int nei: graph.get(node)) if (((visited >> nei) & 1) == 0) ans += dfs(nei, visited | (1 << nei)); memo[node][visited] = ans; return ans; } }
|
[DcJoGw67-Python]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
| from functools import lru_cache
class Solution: def numSquarefulPerms(self, A): N = len(A)
def edge(x, y): r = math.sqrt(x+y) return int(r + 0.5) ** 2 == x+y
graph = [[] for _ in range(len(A))] for i, x in enumerate(A): for j in range(i): if edge(x, A[j]): graph[i].append(j) graph[j].append(i)
@lru_cache(None) def dfs(node, visited): if visited == (1 << N) - 1: return 1
ans = 0 for nei in graph[node]: if (visited >> nei) & 1 == 0: ans += dfs(nei, visited | (1 << nei)) return ans
ans = sum(dfs(i, 1<<i) for i in range(N)) count = collections.Counter(A) for v in count.values(): ans //= math.factorial(v) return ans
|
复杂度分析