给定一个数组 points
,其中 points[i] = [xi, yi]
表示 X-Y 平面上的一个点, _如果这些点构成一个 _
回旋镖 则返回 true
。
回旋镖 定义为一组三个点,这些点 各不相同 且 不在一条直线上 。
示例 1:
**输入:** points = [[1,1],[2,3],[3,2]]
**输出:** true
示例 2:
**输入:** points = [[1,1],[2,2],[3,3]]
**输出:** false
提示:
points.length == 3
points[i].length == 2
0 <= xi, yi <= 100
方法一:向量叉乘
计算从 points}[0] 开始,分别指向 points}[1] 和 points}[2] 的向量 \vec{v}_1 和 \vec{v}_2。「三点各不相同且不在一条直线上」等价于「这两个向量的叉乘结果不为零」:
\vec{v}_1 \times \vec{v}_2 \ne \vec{0
[sol1-Python3]1 2 3 4 5
| class Solution: def isBoomerang(self, points: List[List[int]]) -> bool: v1 = (points[1][0] - points[0][0], points[1][1] - points[0][1]) v2 = (points[2][0] - points[0][0], points[2][1] - points[0][1]) return v1[0] * v2[1] - v1[1] * v2[0] != 0
|
[sol1-C++]1 2 3 4 5 6 7 8
| class Solution { public: bool isBoomerang(vector<vector<int>>& points) { vector<int> v1 = {points[1][0] - points[0][0], points[1][1] - points[0][1]}; vector<int> v2 = {points[2][0] - points[0][0], points[2][1] - points[0][1]}; return v1[0] * v2[1] - v1[1] * v2[0] != 0; } };
|
[sol1-Java]1 2 3 4 5 6 7
| class Solution { public boolean isBoomerang(int[][] points) { int[] v1 = {points[1][0] - points[0][0], points[1][1] - points[0][1]}; int[] v2 = {points[2][0] - points[0][0], points[2][1] - points[0][1]}; return v1[0] * v2[1] - v1[1] * v2[0] != 0; } }
|
[sol1-C#]1 2 3 4 5 6 7
| public class Solution { public bool IsBoomerang(int[][] points) { int[] v1 = {points[1][0] - points[0][0], points[1][1] - points[0][1]}; int[] v2 = {points[2][0] - points[0][0], points[2][1] - points[0][1]}; return v1[0] * v2[1] - v1[1] * v2[0] != 0; } }
|
[sol1-C]1 2 3 4 5
| bool isBoomerang(int** points, int pointsSize, int* pointsColSize){ int v1[2] = {points[1][0] - points[0][0], points[1][1] - points[0][1]}; int v2[2] = {points[2][0] - points[0][0], points[2][1] - points[0][1]}; return v1[0] * v2[1] - v1[1] * v2[0] != 0; }
|
[sol1-Golang]1 2 3 4 5
| func isBoomerang(points [][]int) bool { v1 := [2]int{points[1][0] - points[0][0], points[1][1] - points[0][1]} v2 := [2]int{points[2][0] - points[0][0], points[2][1] - points[0][1]} return v1[0]*v2[1]-v1[1]*v2[0] != 0 }
|
[sol1-JavaScript]1 2 3 4 5
| var isBoomerang = function(points) { const v1 = [points[1][0] - points[0][0], points[1][1] - points[0][1]]; const v2 = [points[2][0] - points[0][0], points[2][1] - points[0][1]]; return v1[0] * v2[1] - v1[1] * v2[0] != 0; };
|
复杂度分析