给你一个整数 n
,请你返回所有 0 到 1 之间(不包括 0 和 1)满足分母小于等于 n
的 **最简 **分数 。分数可以以 **任意
**顺序返回。
示例 1:
**输入:** n = 2
**输出:** ["1/2"]
**解释:** "1/2" 是唯一一个分母小于等于 2 的最简分数。
示例 2:
**输入:** n = 3
**输出:** ["1/2","1/3","2/3"]
示例 3:
**输入:** n = 4
**输出:** ["1/2","1/3","1/4","2/3","3/4"]
**解释:** "2/4" 不是最简分数,因为它可以化简为 "1/2" 。
示例 4:
**输入:** n = 1
**输出:** []
提示:
方法一:数学
由于要保证分数在 (0,1) 范围内,我们可以枚举分母 denominator}\in [2,n] 和分子 numerator}\in [1,\textit{denominator}),若分子分母的最大公约数为 1,则我们找到了一个最简分数。
[sol1-Python3]1 2 3
| class Solution: def simplifiedFractions(self, n: int) -> List[str]: return [f"{numerator}/{denominator}" for denominator in range(2, n + 1) for numerator in range(1, denominator) if gcd(denominator, numerator) == 1]
|
[sol1-C++]1 2 3 4 5 6 7 8 9 10 11 12 13 14
| class Solution { public: vector<string> simplifiedFractions(int n) { vector<string> ans; for (int denominator = 2; denominator <= n; ++denominator) { for (int numerator = 1; numerator < denominator; ++numerator) { if (__gcd(numerator, denominator) == 1) { ans.emplace_back(to_string(numerator) + "/" + to_string(denominator)); } } } return ans; } };
|
[sol1-Java]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| class Solution { public List<String> simplifiedFractions(int n) { List<String> ans = new ArrayList<String>(); for (int denominator = 2; denominator <= n; ++denominator) { for (int numerator = 1; numerator < denominator; ++numerator) { if (gcd(numerator, denominator) == 1) { ans.add(numerator + "/" + denominator); } } } return ans; }
public int gcd(int a, int b) { return b != 0 ? gcd(b, a % b) : a; } }
|
[sol1-C#]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| public class Solution { public IList<string> SimplifiedFractions(int n) { IList<string> ans = new List<string>(); for (int denominator = 2; denominator <= n; ++denominator) { for (int numerator = 1; numerator < denominator; ++numerator) { if (GCD(numerator, denominator) == 1) { ans.Add(numerator + "/" + denominator); } } } return ans; }
public int GCD(int a, int b) { return b != 0 ? GCD(b, a % b) : a; } }
|
[sol1-Golang]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| func simplifiedFractions(n int) (ans []string) { for denominator := 2; denominator <= n; denominator++ { for numerator := 1; numerator < denominator; numerator++ { if gcd(numerator, denominator) == 1 { ans = append(ans, strconv.Itoa(numerator)+"/"+strconv.Itoa(denominator)) } } } return }
func gcd(a, b int) int { for a != 0 { a, b = b%a, a } return b }
|
[sol1-C]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
| #define MAX_FRACTION_LEN 10
int gcd(int a, int b) { if (b == 0) { return a; } return gcd(b, a % b); }
char ** simplifiedFractions(int n, int* returnSize) { char ** ans = (char **)malloc(sizeof(char *) * n * (n - 1) / 2 ); int pos = 0; for (int denominator = 2; denominator <= n; denominator++) { for (int numerator = 1; numerator < denominator; numerator++) { if (gcd(numerator, denominator) == 1) { ans[pos] = (char *)malloc(sizeof(char) * MAX_FRACTION_LEN); snprintf(ans[pos++], MAX_FRACTION_LEN, "%d%c%d", numerator, '/', denominator); } } } *returnSize = pos; return ans; }
|
[sol1-JavaScript]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| var simplifiedFractions = function(n) { const ans = []; for (let denominator = 2; denominator <= n; ++denominator) { for (let numerator = 1; numerator < denominator; ++numerator) { if (gcd(numerator, denominator) == 1) { ans.push(numerator + "/" + denominator); } } } return ans; };
const gcd = (a, b) => { if (b === 0) { return a; } return gcd(b, a % b); }
|
复杂度分析