1471-数组中的 k 个最强值
给你一个整数数组 arr
和一个整数 k
。
设 m
为数组的中位数,只要满足下述两个前提之一,就可以判定 arr[i]
的值比 arr[j]
的值更强:
|arr[i] - m| > |arr[j] - m|
|arr[i] - m| == |arr[j] - m|
,且arr[i] > arr[j]
请返回由数组中最强的 k
个值组成的列表。答案可以以 任意顺序 返回。
中位数 是一个有序整数列表中处于中间位置的值。形式上,如果列表的长度为 n
,那么中位数就是该有序列表(下标从 0 开始)中位于 `((n -
- / 2)` 的元素。
- 例如
arr = [6, -3, 7, 2, 11]
,n = 5
:数组排序后得到arr = [-3, 2, 6, 7, 11]
,数组的中间位置为m = ((5 - 1) / 2) = 2
,中位数arr[m]
的值为6
。 - 例如
arr = [-7, 22, 17, 3]
,n = 4
:数组排序后得到arr = [-7, 3, 17, 22]
,数组的中间位置为m = ((4 - 1) / 2) = 1
,中位数arr[m]
的值为3
。
示例 1:
**输入:** arr = [1,2,3,4,5], k = 2
**输出:** [5,1]
**解释:** 中位数为 3,按从强到弱顺序排序后,数组变为 [5,1,4,2,3]。最强的两个元素是 [5, 1]。[1, 5] 也是正确答案。
注意,尽管 |5 - 3| == |1 - 3| ,但是 5 比 1 更强,因为 5 > 1 。
示例 2:
**输入:** arr = [1,1,3,5,5], k = 2
**输出:** [5,5]
**解释:** 中位数为 3, 按从强到弱顺序排序后,数组变为 [5,5,1,1,3]。最强的两个元素是 [5, 5]。
示例 3:
**输入:** arr = [6,7,11,7,6,8], k = 5
**输出:** [11,8,6,6,7]
**解释:** 中位数为 7, 按从强到弱顺序排序后,数组变为 [11,8,6,6,7,7]。
[11,8,6,6,7] 的任何排列都是正确答案。
示例 4:
**输入:** arr = [6,-3,7,2,11], k = 3
**输出:** [-3,11,2]
示例 5:
**输入:** arr = [-7,22,17,3], k = 2
**输出:** [22,17]
提示:
1 <= arr.length <= 10^5
-10^5 <= arr[i] <= 10^5
1 <= k <= arr.length
Problem: 1471. 数组中的 k 个最强值
[TOC]
思路
- 先排序,找到中位数。
- 接下来最强数一定在排列后的数组的两侧,因为最强数的逻辑是离中位数最远的数,所以接下来贪心取值。
- 双指针指向两侧,将离中位数更远的值优先加入结果数组。
Code
1 |
|
Comments