给你一棵树,树上有 n
个节点,按从 0
到 n-1
编号。树以父节点数组的形式给出,其中 parent[i]
是节点 i
的父节点。树的根节点是编号为 0
的节点。
树节点的第 _k
_个祖先节点是从该节点到根节点路径上的第 k
个节点。
实现 TreeAncestor
类:
TreeAncestor(int n, int[] parent)
对树和父数组中的节点数初始化对象。
getKthAncestor``(int node, int k)
返回节点 node
的第 k
个祖先节点。如果不存在这样的祖先节点,返回 -1
。
示例 1:
![](https://assets.leetcode-cn.com/aliyun-lc-
upload/uploads/2020/06/14/1528_ex1.png)
**输入:**
["TreeAncestor","getKthAncestor","getKthAncestor","getKthAncestor"]
[[7,[-1,0,0,1,1,2,2]],[3,1],[5,2],[6,3]]
**输出:**
[null,1,0,-1]
**解释:**
TreeAncestor treeAncestor = new TreeAncestor(7, [-1, 0, 0, 1, 1, 2, 2]);
treeAncestor.getKthAncestor(3, 1); // 返回 1 ,它是 3 的父节点
treeAncestor.getKthAncestor(5, 2); // 返回 0 ,它是 5 的祖父节点
treeAncestor.getKthAncestor(6, 3); // 返回 -1 因为不存在满足要求的祖先节点
提示:
1 <= k <= n <= 5 * 104
parent[0] == -1
表示编号为 0
的节点是根节点。
- 对于所有的
0 < i < n
,0 <= parent[i] < n
总成立
0 <= node < n
- 至多查询
5 * 104
次
方法一:倍增
思路
倍增的思路类似于动态规划,定义 ancestors}[i][j] 表示节点 i 的第 2^j 个祖先。此题中,树最多有 50000 个节点,因此 ancestors 的第二维度的最大值可以设为 16。根据定义,ancestors}[i][0] = \textit{parent}[i]。状态转移方程是 ancestors}[i][j] = \textit{ancestors}[\textit{ancestors}[i][j - 1]][j - 1],即当前节点的第 2^j 个祖先,是他的第 2^{j-1 个祖先的第 2^{j-1 个祖先。当第 2^j 个祖先不存在时,记为 -1。
查询时,需要将 k 的二进制表示从最低位到最高位依次进行判断,如果第 j 位为 1,则节点 node 需要进行转移到 ancestors}[\textit{node}][j],表示 node 向祖先方向移动了 2^j 次。直至遍历完 k 所有位或者 node 变为 -1。
代码
[sol1-Python3]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| class TreeAncestor:
def __init__(self, n: int, parent: List[int]): self.log = 16 self.ancestors = [[-1] * self.log for _ in range(n)] for i in range(n): self.ancestors[i][0] = parent[i] for j in range(1, self.log): for i in range(n): if self.ancestors[i][j - 1] != -1: self.ancestors[i][j] = self.ancestors[self.ancestors[i][j - 1]][j - 1]
def getKthAncestor(self, node: int, k: int) -> int: for j in range(self.log): if (k>>j) & 1: node = self.ancestors[node][j] if node == -1: return -1 return node
|
[sol1-C++]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| class TreeAncestor { public: constexpr static int Log = 16; vector<vector<int>> ancestors;
TreeAncestor(int n, vector<int>& parent) { ancestors = vector<vector<int>>(n, vector<int>(Log, -1)); for (int i = 0; i < n; i++) { ancestors[i][0] = parent[i]; } for (int j = 1; j < Log; j++) { for (int i = 0; i < n; i++) { if (ancestors[i][j - 1] != -1) { ancestors[i][j] = ancestors[ancestors[i][j - 1]][j - 1]; } } } }
int getKthAncestor(int node, int k) { for (int j = 0; j < Log; j++) { if ((k >> j) & 1) { node = ancestors[node][j]; if (node == -1) { return -1; } } } return node; } };
|
[sol1-Java]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
| class TreeAncestor { static final int LOG = 16; int[][] ancestors;
public TreeAncestor(int n, int[] parent) { ancestors = new int[n][LOG]; for (int i = 0; i < n; i++) { Arrays.fill(ancestors[i], -1); } for (int i = 0; i < n; i++) { ancestors[i][0] = parent[i]; } for (int j = 1; j < LOG; j++) { for (int i = 0; i < n; i++) { if (ancestors[i][j - 1] != -1) { ancestors[i][j] = ancestors[ancestors[i][j - 1]][j - 1]; } } } }
public int getKthAncestor(int node, int k) { for (int j = 0; j < LOG; j++) { if (((k >> j) & 1) != 0) { node = ancestors[node][j]; if (node == -1) { return -1; } } } return node; } }
|
[sol1-C#]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
| public class TreeAncestor { const int LOG = 16; int[][] ancestors;
public TreeAncestor(int n, int[] parent) { ancestors = new int[n][]; for (int i = 0; i < n; i++) { ancestors[i] = new int[LOG]; Array.Fill(ancestors[i], -1); } for (int i = 0; i < n; i++) { ancestors[i][0] = parent[i]; } for (int j = 1; j < LOG; j++) { for (int i = 0; i < n; i++) { if (ancestors[i][j - 1] != -1) { ancestors[i][j] = ancestors[ancestors[i][j - 1]][j - 1]; } } } }
public int GetKthAncestor(int node, int k) { for (int j = 0; j < LOG; j++) { if (((k >> j) & 1) != 0) { node = ancestors[node][j]; if (node == -1) { return -1; } } } return node; } }
|
[sol1-Golang]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
| const kLog = 16
type TreeAncestor struct { ancestors [][]int }
func Constructor(n int, parent []int) TreeAncestor { var this TreeAncestor this.ancestors = make([][]int, n) for i := 0; i < n; i++ { this.ancestors[i] = make([]int, kLog) for j := 0; j < kLog; j++ { this.ancestors[i][j] = -1 } this.ancestors[i][0] = parent[i] } for j := 1; j < kLog; j++ { for i := 0; i < n; i++ { if this.ancestors[i][j - 1] != -1 { this.ancestors[i][j] = this.ancestors[this.ancestors[i][j - 1]][j - 1] } } } return this }
func (this *TreeAncestor) GetKthAncestor(node int, k int) int { for j := 0; j < kLog; j++ { if (k >> j) & 1 != 0 { node = this.ancestors[node][j] if node == -1 { return -1 } } } return node }
|
[sol1-C]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
| const int LOG = 16;
typedef struct { int **ancestors; int n; } TreeAncestor;
TreeAncestor* treeAncestorCreate(int n, int* parent, int parentSize) { TreeAncestor *obj = (TreeAncestor *)malloc(sizeof(TreeAncestor)); obj->ancestors = (int **)malloc(sizeof(int *) * n); for (int i = 0; i < n; i++) { obj->ancestors[i] = (int *)malloc(sizeof(int) * LOG); memset(obj->ancestors[i], 0xff, sizeof(int) * LOG); } for (int i = 0; i < n; i++) { obj->ancestors[i][0] = parent[i]; } for (int j = 1; j < LOG; j++) { for (int i = 0; i < n; i++) { if (obj->ancestors[i][j - 1] != -1) { obj->ancestors[i][j] = obj->ancestors[obj->ancestors[i][j - 1]][j - 1]; } } } return obj; }
int treeAncestorGetKthAncestor(TreeAncestor* obj, int node, int k) { for (int j = 0; j < LOG; j++) { if ((k >> j) & 1) { node = obj->ancestors[node][j]; if (node == -1) { return -1; } } } return node; }
void treeAncestorFree(TreeAncestor* obj) { for (int i = 0; i < obj->n; i++) { free(obj->ancestors[i]); } free(obj->ancestors); free(obj); }
|
[sol1-JavaScript]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
| const LOG = 16; var TreeAncestor = function(n, parent) { ancestors = new Array(n).fill(0).map(() => new Array(LOG).fill(-1)); for (let i = 0; i < n; i++) { ancestors[i][0] = parent[i]; } for (let j = 1; j < LOG; j++) { for (let i = 0; i < n; i++) { if (ancestors[i][j - 1] !== -1) { ancestors[i][j] = ancestors[ancestors[i][j - 1]][j - 1]; } } } }
TreeAncestor.prototype.getKthAncestor = function(node, k) { for (let j = 0; j < LOG; j++) { if (((k >> j) & 1) !== 0) { node = ancestors[node][j]; if (node === -1) { return -1; } } } return node; };
|
复杂度分析