2104-子数组范围和

Raphael Liu Lv10

给你一个整数数组 numsnums 中,子数组的 范围 是子数组中最大元素和最小元素的差值。

返回 nums所有 子数组范围的

子数组是数组中一个连续 非空 的元素序列。

示例 1:

**输入:** nums = [1,2,3]
**输出:** 4
**解释:** nums 的 6 个子数组如下所示:
[1],范围 = 最大 - 最小 = 1 - 1 = 0 
[2],范围 = 2 - 2 = 0
[3],范围 = 3 - 3 = 0
[1,2],范围 = 2 - 1 = 1
[2,3],范围 = 3 - 2 = 1
[1,2,3],范围 = 3 - 1 = 2
所有范围的和是 0 + 0 + 0 + 1 + 1 + 2 = 4

示例 2:

**输入:** nums = [1,3,3]
**输出:** 4
**解释:** nums 的 6 个子数组如下所示:
[1],范围 = 最大 - 最小 = 1 - 1 = 0
[3],范围 = 3 - 3 = 0
[3],范围 = 3 - 3 = 0
[1,3],范围 = 3 - 1 = 2
[3,3],范围 = 3 - 3 = 0
[1,3,3],范围 = 3 - 1 = 2
所有范围的和是 0 + 0 + 0 + 2 + 0 + 2 = 4

示例 3:

**输入:** nums = [4,-2,-3,4,1]
**输出:** 59
**解释:** nums 中所有子数组范围的和是 59

提示:

  • 1 <= nums.length <= 1000
  • -109 <= nums[i] <= 109

进阶: 你可以设计一种时间复杂度为 O(n) 的解决方案吗?

方法一:遍历子数组

思路与算法

为了方便计算子数组的最大值与最小值,我们首先枚举子数组的左边界 i,然后枚举子数组的右边界 j,且 i \le j。在枚举 j 的过程中我们可以迭代地计算子数组 [i,j] 的最小值 minVal 与最大值 maxVal,然后将范围值 maxVal} - \textit{minVal 加到总范围和。

代码

[sol1-C++]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public:
long long subArrayRanges(vector<int>& nums) {
int n = nums.size();
long long ret = 0;
for (int i = 0; i < n; i++) {
int minVal = INT_MAX, maxVal = INT_MIN;
for (int j = i; j < n; j++) {
minVal = min(minVal, nums[j]);
maxVal = max(maxVal, nums[j]);
ret += maxVal - minVal;
}
}
return ret;
}
};
[sol1-Java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution {
public long subArrayRanges(int[] nums) {
int n = nums.length;
long ret = 0;
for (int i = 0; i < n; i++) {
int minVal = Integer.MAX_VALUE, maxVal = Integer.MIN_VALUE;
for (int j = i; j < n; j++) {
minVal = Math.min(minVal, nums[j]);
maxVal = Math.max(maxVal, nums[j]);
ret += maxVal - minVal;
}
}
return ret;
}
}
[sol1-C#]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class Solution {
public long SubArrayRanges(int[] nums) {
int n = nums.Length;
long ret = 0;
for (int i = 0; i < n; i++) {
int minVal = int.MaxValue, maxVal = int.MinValue;
for (int j = i; j < n; j++) {
minVal = Math.Min(minVal, nums[j]);
maxVal = Math.Max(maxVal, nums[j]);
ret += maxVal - minVal;
}
}
return ret;
}
}
[sol1-C]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))

long long subArrayRanges(int* nums, int numsSize){
long long ret = 0;
for (int i = 0; i < numsSize; i++) {
int minVal = INT_MAX, maxVal = INT_MIN;
for (int j = i; j < numsSize; j++) {
minVal = MIN(minVal, nums[j]);
maxVal = MAX(maxVal, nums[j]);
ret += maxVal - minVal;
}
}
return ret;
}
[sol1-JavaScript]
1
2
3
4
5
6
7
8
9
10
11
12
13
var subArrayRanges = function(nums) {
const n = nums.length;
let ret = 0;
for (let i = 0; i < n; i++) {
let minVal = Number.MAX_VALUE, maxVal = -Number.MAX_VALUE;
for (let j = i; j < n; j++) {
minVal = Math.min(minVal, nums[j]);
maxVal = Math.max(maxVal, nums[j]);
ret += maxVal - minVal;
}
}
return ret;
};
[sol1-Python3]
1
2
3
4
5
6
7
8
9
10
class Solution:
def subArrayRanges(self, nums: List[int]) -> int:
ans, n = 0, len(nums)
for i in range(n):
minVal, maxVal = inf, -inf
for j in range(i, n):
minVal = min(minVal, nums[j])
maxVal = max(maxVal, nums[j])
ans += maxVal - minVal
return ans
[sol1-Golang]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
func subArrayRanges(nums []int) (ans int64) {
for i, num := range nums {
minVal, maxVal := num, num
for _, v := range nums[i+1:] {
if v < minVal {
minVal = v
} else if v > maxVal {
maxVal = v
}
ans += int64(maxVal - minVal)
}
}
return
}

复杂度分析

  • 时间复杂度:O(n^2),其中 n 为数组的大小。两层循环需要 O(n^2)。

  • 空间复杂度:O(1)。

方法二:单调栈

思路与算法

为了使子数组的最小值或最大值唯一,我们定义如果 nums}[i] = \textit{nums}[j],那么 nums}[i] 与 nums}[j] 的逻辑大小由下标 i 与下标 j 的逻辑大小决定,即如果 i < j,那么 nums}[i] 逻辑上小于 nums}[j]。

根据范围和的定义,可以推出范围和 sum 等于所有子数组的最大值之和 sumMax 减去所有子数组的最小值之和 sumMin。

假设 nums}[i] 左侧最近的比它小的数为 nums}[j],右侧最近的比它小的数为 nums}[k],那么所有以 nums}[i] 为最小值的子数组数目为 (k - i) \times (i - j)。为了能获得 nums}[i] 左侧和右侧最近的比它小的数的下标,我们可以使用单调递增栈分别预处理出数组 minLeft 和 minRight,其中 minLeft}[i] 表示 nums}[i] 左侧最近的比它小的数的下标,minRight}[i] 表示 nums}[i] 右侧最近的比它小的数的下标。

以求解 minLeft 为例,我们从左到右遍历整个数组 nums。处理到 nums}[i] 时,我们执行出栈操作直到栈为空或者 nums 中以栈顶元素为下标的数逻辑上小于 nums}[i]。如果栈为空,那么 minLeft}[i] = -1,否则 minLeft}[i] 等于栈顶元素,然后将下标 i 入栈。

那么所有子数组的最小值之和 sumMin} = \sum_{i=0}^{n-1} (\textit{minRight}[i] - i) \times (i - \textit{minLeft}[i]) \times \textit{nums}[i]。同理我们也可以求得所有子数组的最大值之和 sumMax。

代码

[sol2-C++]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Solution {
public:
long long subArrayRanges(vector<int>& nums) {
int n = nums.size();
vector<int> minLeft(n), minRight(n), maxLeft(n), maxRight(n);
stack<int> minStack, maxStack;
for (int i = 0; i < n; i++) {
while (!minStack.empty() && nums[minStack.top()] > nums[i]) {
minStack.pop();
}
minLeft[i] = minStack.empty() ? -1 : minStack.top();
minStack.push(i);

// 如果 nums[maxStack.top()] == nums[i], 那么根据定义,
// nums[maxStack.top()] 逻辑上小于 nums[i],因为 maxStack.top() < i
while (!maxStack.empty() && nums[maxStack.top()] <= nums[i]) {
maxStack.pop();
}
maxLeft[i] = maxStack.empty() ? -1 : maxStack.top();
maxStack.push(i);
}
minStack = stack<int>();
maxStack = stack<int>();
for (int i = n - 1; i >= 0; i--) {
// 如果 nums[minStack.top()] == nums[i], 那么根据定义,
// nums[minStack.top()] 逻辑上大于 nums[i],因为 minStack.top() > i
while (!minStack.empty() && nums[minStack.top()] >= nums[i]) {
minStack.pop();
}
minRight[i] = minStack.empty() ? n : minStack.top();
minStack.push(i);

while (!maxStack.empty() && nums[maxStack.top()] < nums[i]) {
maxStack.pop();
}
maxRight[i] = maxStack.empty() ? n : maxStack.top();
maxStack.push(i);
}

long long sumMax = 0, sumMin = 0;
for (int i = 0; i < n; i++) {
sumMax += static_cast<long long>(maxRight[i] - i) * (i - maxLeft[i]) * nums[i];
sumMin += static_cast<long long>(minRight[i] - i) * (i - minLeft[i]) * nums[i];
}
return sumMax - sumMin;
}
};
[sol2-Java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
class Solution {
public long subArrayRanges(int[] nums) {
int n = nums.length;
int[] minLeft = new int[n];
int[] minRight = new int[n];
int[] maxLeft = new int[n];
int[] maxRight = new int[n];
Deque<Integer> minStack = new ArrayDeque<Integer>();
Deque<Integer> maxStack = new ArrayDeque<Integer>();
for (int i = 0; i < n; i++) {
while (!minStack.isEmpty() && nums[minStack.peek()] > nums[i]) {
minStack.pop();
}
minLeft[i] = minStack.isEmpty() ? -1 : minStack.peek();
minStack.push(i);

// 如果 nums[maxStack.peek()] == nums[i], 那么根据定义,
// nums[maxStack.peek()] 逻辑上小于 nums[i],因为 maxStack.peek() < i
while (!maxStack.isEmpty() && nums[maxStack.peek()] <= nums[i]) {
maxStack.pop();
}
maxLeft[i] = maxStack.isEmpty() ? -1 : maxStack.peek();
maxStack.push(i);
}
minStack.clear();
maxStack.clear();
for (int i = n - 1; i >= 0; i--) {
// 如果 nums[minStack.peek()] == nums[i], 那么根据定义,
// nums[minStack.peek()] 逻辑上大于 nums[i],因为 minStack.peek() > i
while (!minStack.isEmpty() && nums[minStack.peek()] >= nums[i]) {
minStack.pop();
}
minRight[i] = minStack.isEmpty() ? n : minStack.peek();
minStack.push(i);

while (!maxStack.isEmpty() && nums[maxStack.peek()] < nums[i]) {
maxStack.pop();
}
maxRight[i] = maxStack.isEmpty() ? n : maxStack.peek();
maxStack.push(i);
}

long sumMax = 0, sumMin = 0;
for (int i = 0; i < n; i++) {
sumMax += (long) (maxRight[i] - i) * (i - maxLeft[i]) * nums[i];
sumMin += (long) (minRight[i] - i) * (i - minLeft[i]) * nums[i];
}
return sumMax - sumMin;
}
}
[sol2-C#]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
public class Solution {
public long SubArrayRanges(int[] nums) {
int n = nums.Length;
int[] minLeft = new int[n];
int[] minRight = new int[n];
int[] maxLeft = new int[n];
int[] maxRight = new int[n];
Stack<int> minStack = new Stack<int>();
Stack<int> maxStack = new Stack<int>();
for (int i = 0; i < n; i++) {
while (minStack.Count > 0 && nums[minStack.Peek()] > nums[i]) {
minStack.Pop();
}
minLeft[i] = minStack.Count == 0 ? -1 : minStack.Peek();
minStack.Push(i);

// 如果 nums[maxStack.Peek()] == nums[i], 那么根据定义,
// nums[maxStack.Peek()] 逻辑上小于 nums[i],因为 maxStack.Peek() < i
while (maxStack.Count > 0 && nums[maxStack.Peek()] <= nums[i]) {
maxStack.Pop();
}
maxLeft[i] = maxStack.Count == 0 ? -1 : maxStack.Peek();
maxStack.Push(i);
}
minStack.Clear();
maxStack.Clear();
for (int i = n - 1; i >= 0; i--) {
// 如果 nums[minStack.Peek()] == nums[i], 那么根据定义,
// nums[minStack.Peek()] 逻辑上大于 nums[i],因为 minStack.Peek() > i
while (minStack.Count > 0 && nums[minStack.Peek()] >= nums[i]) {
minStack.Pop();
}
minRight[i] = minStack.Count == 0 ? n : minStack.Peek();
minStack.Push(i);

while (maxStack.Count > 0 && nums[maxStack.Peek()] < nums[i]) {
maxStack.Pop();
}
maxRight[i] = maxStack.Count == 0 ? n : maxStack.Peek();
maxStack.Push(i);
}

long sumMax = 0, sumMin = 0;
for (int i = 0; i < n; i++) {
sumMax += (long) (maxRight[i] - i) * (i - maxLeft[i]) * nums[i];
sumMin += (long) (minRight[i] - i) * (i - minLeft[i]) * nums[i];
}
return sumMax - sumMin;
}
}
[sol2-C]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
typedef struct {
int * stBuff;
int stSize;
int stTop;
} Stack;

void initStack(Stack * obj, int stSize) {
obj->stBuff = (int *)malloc(sizeof(int) * stSize);
obj->stSize = stSize;
obj->stTop = 0;
}

static inline bool pushStack(Stack * obj, int val) {
if (obj->stTop == obj->stSize) {
return false;
}
obj->stBuff[obj->stTop++] = val;
return true;
}

static inline int popStack(Stack * obj) {
if (obj->stTop == 0) {
return -1;
}
int res = obj->stBuff[obj->stTop - 1];
obj->stTop--;
return res;
}


static inline bool isEmptyStack(const Stack * obj) {
return obj->stTop == 0;
}

static inline int topStack(const Stack * obj) {
if (obj->stTop == 0) {
return -1;
}
return obj->stBuff[obj->stTop - 1];
}

static inline bool clearStack(Stack * obj) {
obj->stTop = 0;
return true;
}

static inline void freeStack(Stack * obj) {
free(obj->stBuff);
}

long long subArrayRanges(int* nums, int numsSize){
int * minLeft = (int *)malloc(sizeof(int) * numsSize);
int * minRight = (int *)malloc(sizeof(int) * numsSize);
int * maxLeft = (int *)malloc(sizeof(int) * numsSize);
int * maxRight = (int *)malloc(sizeof(int) * numsSize);
Stack minStack, maxStack;
initStack(&minStack, numsSize);
initStack(&maxStack, numsSize);
for (int i = 0; i < numsSize; i++) {
while (!isEmptyStack(&minStack) && nums[topStack(&minStack)] > nums[i]) {
popStack(&minStack);
}
minLeft[i] = isEmptyStack(&minStack) ? -1 : topStack(&minStack);
pushStack(&minStack, i);

// 如果 nums[maxStack.top()] == nums[i], 那么根据定义,
// nums[maxStack.top()] 逻辑上小于 nums[i],因为 maxStack.top() < i
while (!isEmptyStack(&maxStack) && nums[topStack(&maxStack)] <= nums[i]) {
popStack(&maxStack);
}
maxLeft[i] = isEmptyStack(&maxStack) ? -1 : topStack(&maxStack);
pushStack(&maxStack, i);
}
clearStack(&minStack);
clearStack(&maxStack);
for (int i = numsSize - 1; i >= 0; i--) {
// 如果 nums[minStack.top()] == nums[i], 那么根据定义,
// nums[minStack.top()] 逻辑上大于 nums[i],因为 minStack.top() > i
while (!isEmptyStack(&minStack) && nums[topStack(&minStack)] >= nums[i]) {
popStack(&minStack);
}
minRight[i] = isEmptyStack(&minStack) ? numsSize : topStack(&minStack);
pushStack(&minStack, i);

while (!isEmptyStack(&maxStack) && nums[topStack(&maxStack)] < nums[i]) {
popStack(&maxStack);
}
maxRight[i] = isEmptyStack(&maxStack) ? numsSize : topStack(&maxStack);
pushStack(&maxStack, i);
}
freeStack(&minStack);
freeStack(&maxStack);

long long sumMax = 0, sumMin = 0;
for (int i = 0; i < numsSize; i++) {
sumMax += (long long)(maxRight[i] - i) * (i - maxLeft[i]) * nums[i];
sumMin += (long long)(minRight[i] - i) * (i - minLeft[i]) * nums[i];
}

return sumMax - sumMin;
}
[sol2-JavaScript]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
var subArrayRanges = function(nums) {
const n = nums.length;
const minLeft = new Array(n).fill(0);
const minRight = new Array(n).fill(0);
const maxLeft = new Array(n).fill(0);
const maxRight = new Array(n).fill(0);
let minStack = [];
let maxStack = [];
for (let i = 0; i < n; i++) {
while (minStack.length && nums[minStack[minStack.length - 1]] > nums[i]) {
minStack.pop();
}
minLeft[i] = minStack.length === 0 ? -1 : minStack[minStack.length - 1];
minStack.push(i);

// 如果 nums[maxStack[maxStack.length - 1]] == nums[i], 那么根据定义,
// nums[maxStack[maxStack.length - 1]] 逻辑上小于 nums[i],因为 maxStack[maxStack.length - 1] < i
while (maxStack.length && nums[maxStack[maxStack.length - 1]] <= nums[i]) {
maxStack.pop();
}
maxLeft[i] = maxStack.length === 0 ? -1 : maxStack[maxStack.length - 1];
maxStack.push(i);
}
minStack = [];
maxStack = [];
for (let i = n - 1; i >= 0; i--) {
// 如果 nums[minStack[minStack.length - 1]] == nums[i], 那么根据定义,
// nums[minStack[minStack.length - 1]] 逻辑上大于 nums[i],因为 minStack[minStack.length - 1] > i
while (minStack.length && nums[minStack[minStack.length - 1]] >= nums[i]) {
minStack.pop();
}
minRight[i] = minStack.length === 0 ? n : minStack[minStack.length - 1];
minStack.push(i);

while (maxStack.length && nums[maxStack[maxStack.length - 1]] < nums[i]) {
maxStack.pop();
}
maxRight[i] = maxStack.length === 0 ? n : maxStack[maxStack.length - 1];
maxStack.push(i);
}

let sumMax = 0, sumMin = 0;
for (let i = 0; i < n; i++) {
sumMax += (maxRight[i] - i) * (i - maxLeft[i]) * nums[i];
sumMin += (minRight[i] - i) * (i - minLeft[i]) * nums[i];
}
return sumMax - sumMin;
};
[sol2-Python3]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class Solution:
def subArrayRanges(self, nums: List[int]) -> int:
n = len(nums)
minLeft, maxLeft = [0] * n, [0] * n
minStack, maxStack = [], []
for i, num in enumerate(nums):
while minStack and nums[minStack[-1]] > num:
minStack.pop()
minLeft[i] = minStack[-1] if minStack else -1
minStack.append(i)

# 如果 nums[maxStack[-1]] == num, 那么根据定义,
# nums[maxStack[-1]] 逻辑上小于 num,因为 maxStack[-1] < i
while maxStack and nums[maxStack[-1]] <= num:
maxStack.pop()
maxLeft[i] = maxStack[-1] if maxStack else -1
maxStack.append(i)

minRight, maxRight = [0] * n, [0] * n
minStack, maxStack = [], []
for i in range(n - 1, -1, -1):
num = nums[i]
# 如果 nums[minStack[-1]] == num, 那么根据定义,
# nums[minStack[-1]] 逻辑上大于 num,因为 minStack[-1] > i
while minStack and nums[minStack[-1]] >= num:
minStack.pop()
minRight[i] = minStack[-1] if minStack else n
minStack.append(i)

while maxStack and nums[maxStack[-1]] < num:
maxStack.pop()
maxRight[i] = maxStack[-1] if maxStack else n
maxStack.append(i)

sumMax, sumMin = 0, 0
for i, num in enumerate(nums):
sumMax += (maxRight[i] - i) * (i - maxLeft[i]) * num
sumMin += (minRight[i] - i) * (i - minLeft[i]) * num
return sumMax - sumMin
[sol2-Golang]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
func subArrayRanges(nums []int) int64 {
n := len(nums)
minLeft := make([]int, n)
maxLeft := make([]int, n)
var minStk, maxStk []int
for i, num := range nums {
for len(minStk) > 0 && nums[minStk[len(minStk)-1]] > num {
minStk = minStk[:len(minStk)-1]
}
if len(minStk) > 0 {
minLeft[i] = minStk[len(minStk)-1]
} else {
minLeft[i] = -1
}
minStk = append(minStk, i)

// 如果 nums[maxStk[len(maxStk)-1]] == num, 那么根据定义,
// nums[maxStk[len(maxStk)-1]] 逻辑上小于 num,因为 maxStk[len(maxStk)-1] < i
for len(maxStk) > 0 && nums[maxStk[len(maxStk)-1]] <= num {
maxStk = maxStk[:len(maxStk)-1]
}
if len(maxStk) > 0 {
maxLeft[i] = maxStk[len(maxStk)-1]
} else {
maxLeft[i] = -1
}
maxStk = append(maxStk, i)
}

minRight := make([]int, n)
maxRight := make([]int, n)
minStk = minStk[:0]
maxStk = maxStk[:0]
for i := n - 1; i >= 0; i-- {
num := nums[i]
// 如果 nums[minStk[len(minStk)-1]] == num, 那么根据定义,
// nums[minStk[len(minStk)-1]] 逻辑上大于 num,因为 minStk[len(minStk)-1] > i
for len(minStk) > 0 && nums[minStk[len(minStk)-1]] >= num {
minStk = minStk[:len(minStk)-1]
}
if len(minStk) > 0 {
minRight[i] = minStk[len(minStk)-1]
} else {
minRight[i] = n
}
minStk = append(minStk, i)

for len(maxStk) > 0 && nums[maxStk[len(maxStk)-1]] < num {
maxStk = maxStk[:len(maxStk)-1]
}
if len(maxStk) > 0 {
maxRight[i] = maxStk[len(maxStk)-1]
} else {
maxRight[i] = n
}
maxStk = append(maxStk, i)
}

var sumMax, sumMin int64
for i, num := range nums {
sumMax += int64(maxRight[i]-i) * int64(i-maxLeft[i]) * int64(num)
sumMin += int64(minRight[i]-i) * int64(i-minLeft[i]) * int64(num)
}
return sumMax - sumMin
}

复杂度分析

  • 时间复杂度:O(n),其中 n 为数组的大小。使用单调栈预处理出四个数组需要 O(n),计算最大值之和与最小值之和需要 O(n)。

  • 空间复杂度:O(n)。保存四个数组需要 O(n);单调栈最多保存 n 个元素,需要 O(n)。

 Comments
On this page
2104-子数组范围和