给你一个长度为 n
的整数数组 nums
,和一个长度为 m
的整数数组 queries
。
返回一个长度为 m
的数组 __answer
__ ,其中 __answer[i]
__ 是 nums
中 元素之和小于等于
queries[i]
的 子序列 的 最大 长度 。
子序列 是由一个数组删除某些元素(也可以不删除)但不改变剩余元素顺序得到的一个数组。
示例 1:
**输入:** nums = [4,5,2,1], queries = [3,10,21]
**输出:** [2,3,4]
**解释:** queries 对应的 answer 如下:
- 子序列 [2,1] 的和小于或等于 3 。可以证明满足题目要求的子序列的最大长度是 2 ,所以 answer[0] = 2 。
- 子序列 [4,5,1] 的和小于或等于 10 。可以证明满足题目要求的子序列的最大长度是 3 ,所以 answer[1] = 3 。
- 子序列 [4,5,2,1] 的和小于或等于 21 。可以证明满足题目要求的子序列的最大长度是 4 ,所以 answer[2] = 4 。
示例 2:
**输入:** nums = [2,3,4,5], queries = [1]
**输出:** [0]
**解释:** 空子序列是唯一一个满足元素和小于或等于 1 的子序列,所以 answer[0] = 0 。
提示:
n == nums.length
m == queries.length
1 <= n, m <= 1000
1 <= nums[i], queries[i] <= 106
方法一:二分查找
由题意可知,nums 的元素次序对结果无影响,因此我们对 nums 从小到大进行排序。显然和有限的最长子序列由最小的前几个数组成。使用数组 f 保存 nums 的前缀和,其中 f[i] 表示前 i 个元素之和(不包括 nums}[i])。遍历 queries,假设当前查询值为 q,使用二分查找获取满足 f[i] \gt q 的最小的 i,那么和小于等于 q 的最长子序列长度为 i-1。
[sol1-Python3]1 2 3 4
| class Solution: def answerQueries(self, nums: List[int], queries: List[int]) -> List[int]: f = list(accumulate(sorted(nums))) return [bisect_right(f, q) for q in queries]
|
[sol1-C++]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| class Solution { public: vector<int> answerQueries(vector<int>& nums, vector<int>& queries) { int n = nums.size(), m = queries.size(); sort(nums.begin(), nums.end()); vector<int> f(n + 1); for (int i = 0; i < n; i++) { f[i + 1] = f[i] + nums[i]; } vector<int> answer(m); for (int i = 0; i < m; i++) { answer[i] = upper_bound(f.begin(), f.end(), queries[i]) - f.begin() - 1; } return answer; } };
|
[sol1-Java]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| class Solution { public int[] answerQueries(int[] nums, int[] queries) { int n = nums.length, m = queries.length; Arrays.sort(nums); int[] f = new int[n + 1]; for (int i = 0; i < n; i++) { f[i + 1] = f[i] + nums[i]; } int[] answer = new int[m]; for (int i = 0; i < m; i++) { answer[i] = binarySearch(f, queries[i]) - 1; } return answer; }
public int binarySearch(int[] f, int target) { int low = 1, high = f.length; while (low < high) { int mid = low + (high - low) / 2; if (f[mid] > target) { high = mid; } else { low = mid + 1; } } return low; } }
|
[sol1-C#]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| public class Solution { public int[] AnswerQueries(int[] nums, int[] queries) { int n = nums.Length, m = queries.Length; Array.Sort(nums); int[] f = new int[n + 1]; for (int i = 0; i < n; i++) { f[i + 1] = f[i] + nums[i]; } int[] answer = new int[m]; for (int i = 0; i < m; i++) { answer[i] = BinarySearch(f, queries[i]) - 1; } return answer; }
public int BinarySearch(int[] f, int target) { int low = 1, high = f.Length; while (low < high) { int mid = low + (high - low) / 2; if (f[mid] > target) { high = mid; } else { low = mid + 1; } } return low; } }
|
[sol1-C]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| static int cmp(const void *pa, const void *pb) { return *(int *)pa - *(int *)pb; }
int binarySearch(int *arr, int arrSize, int target) { int low = 1, high = arrSize; while (low < high) { int mid = low + (high - low) / 2; if (arr[mid] > target) { high = mid; } else { low = mid + 1; } } return low; }
int* answerQueries(int* nums, int numsSize, int* queries, int queriesSize, int* returnSize) { qsort(nums, numsSize, sizeof(int), cmp); int f[numsSize + 1]; f[0] = 0; for (int i = 0; i < numsSize; i++) { f[i + 1] = f[i] + nums[i]; } int *answer = (int *)calloc(sizeof(int), queriesSize); for (int i = 0; i < queriesSize; i++) { answer[i] = binarySearch(f, numsSize + 1, queries[i]) - 1; } *returnSize = queriesSize; return answer; }
|
[sol1-JavaScript]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
| var answerQueries = function(nums, queries) { const n = nums.length, m = queries.length; nums.sort((a, b) => a - b); const f = new Array(n + 1).fill(0); for (let i = 0; i < n; i++) { f[i + 1] = f[i] + nums[i]; } const answer = new Array(m).fill(0); for (let i = 0; i < m; i++) { answer[i] = binarySearch(f, queries[i]) - 1; } return answer; }
const binarySearch = (f, target) => { let low = 1, high = f.length; while (low < high) { const mid = low + Math.floor((high - low) / 2); if (f[mid] > target) { high = mid; } else { low = mid + 1; } } return low; };
|
[sol1-Golang]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| func answerQueries(nums []int, queries []int) []int { sort.Ints(nums) n := len(nums) f := make([]int, n) f[0] = nums[0] for i := 1; i < n; i++ { f[i] = f[i-1] + nums[i] } ans := []int{} for _, q := range queries { idx := sort.SearchInts(f, q+1) ans = append(ans, idx) } return ans }
|
复杂度分析