LCR 016-无重复字符的最长子串
给定一个字符串 s
,请你找出其中不含有重复字符的 **最长连续子字符串 **的长度。
示例 1:
**输入:** s = "abcabcbb"
**输出:** 3
**解释:** 因为无重复字符的最长子字符串是 "abc",所以其长度为 3。
示例 2:
**输入:** s = "bbbbb"
**输出:** 1
**解释:** 因为无重复字符的最长子字符串是 "b",所以其长度为 1。
示例 3:
**输入:** s = "pwwkew"
**输出:** 3
**解释:** 因为无重复字符的最长子串是 "wke",所以其长度为 3。
请注意,你的答案必须是 **子串** 的长度,"pwke" 是一个 _子序列,_ 不是子串。
示例 4:
**输入:** s = ""
**输出:** 0
提示:
0 <= s.length <= 5 * 104
s
由英文字母、数字、符号和空格组成
注意:本题与主站 3 题相同: <https://leetcode-cn.com/problems/longest-substring-without-
repeating-characters/>
方法一:滑动窗口
思路和算法
我们先用一个例子考虑如何在较优的时间复杂度内通过本题。
我们不妨以示例一中的字符串 abcabcbb 为例,找出从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于示例一中的字符串,我们列举出这些结果,其中括号中表示选中的字符以及最长的字符串:
- 以 (a)bcabcbb 开始的最长字符串为 (abc)abcbb;
- 以 a(b)cabcbb 开始的最长字符串为 a(bca)bcbb;
- 以 ab(c)abcbb 开始的最长字符串为 ab(cab)cbb;
- 以 abc(a)bcbb 开始的最长字符串为 abc(abc)bb;
- 以 abca(b)cbb 开始的最长字符串为 abca(bc)bb;
- 以 abcab(c)bb 开始的最长字符串为 abcab(cb)b;
- 以 abcabc(b)b 开始的最长字符串为 abcabc(b)b;
- 以 abcabcb(b) 开始的最长字符串为 abcabcb(b)。
发现了什么?如果我们依次递增地枚举子串的起始位置,那么子串的结束位置也是递增的!这里的原因在于,假设我们选择字符串中的第 k 个字符作为起始位置,并且得到了不包含重复字符的最长子串的结束位置为 r_k。那么当我们选择第 k+1 个字符作为起始位置时,首先从 k+1 到 r_k 的字符显然是不重复的,并且由于少了原本的第 k 个字符,我们可以尝试继续增大 r_k,直到右侧出现了重复字符为止。
这样一来,我们就可以使用「滑动窗口」来解决这个问题了:
我们使用两个指针表示字符串中的某个子串(或窗口)的左右边界,其中左指针代表着上文中「枚举子串的起始位置」,而右指针即为上文中的 r_k;
在每一步的操作中,我们会将左指针向右移动一格,表示 我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着 以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度;
在枚举结束后,我们找到的最长的子串的长度即为答案。
判断重复字符
在上面的流程中,我们还需要使用一种数据结构来判断 是否有重复的字符,常用的数据结构为哈希集合(即 C++
中的 std::unordered_set
,Java
中的 HashSet
,Python
中的 set
, JavaScript
中的 Set
)。在左指针向右移动的时候,我们从哈希集合中移除一个字符,在右指针向右移动的时候,我们往哈希集合中添加一个字符。
至此,我们就完美解决了本题。
1 | class Solution { |
1 | class Solution { |
1 | class Solution: |
1 | var lengthOfLongestSubstring = function(s) { |
1 | func lengthOfLongestSubstring(s string) int { |
复杂度分析
时间复杂度:O(N),其中 N 是字符串的长度。左指针和右指针分别会遍历整个字符串一次。
空间复杂度:O(|\Sigma|),其中 \Sigma 表示字符集(即字符串中可以出现的字符),|\Sigma| 表示字符集的大小。在本题中没有明确说明字符集,因此可以默认为所有 ASCII 码在 [0, 128) 内的字符,即 |\Sigma| = 128。我们需要用到哈希集合来存储出现过的字符,而字符最多有 |\Sigma| 个,因此空间复杂度为 O(|\Sigma|)。