给你一棵二叉搜索树,请 按中序遍历
将其重新排列为一棵递增顺序搜索树,使树中最左边的节点成为树的根节点,并且每个节点没有左子节点,只有一个右子节点。
示例 1:
**输入:** root = [5,3,6,2,4,null,8,1,null,null,null,7,9]
**输出:** [1,null,2,null,3,null,4,null,5,null,6,null,7,null,8,null,9]
示例 2:
**输入:** root = [5,1,7]
**输出:** [1,null,5,null,7]
提示:
- 树中节点数的取值范围是
[1, 100]
0 <= Node.val <= 1000
注意:本题与主站 897 题相同: <https://leetcode-cn.com/problems/increasing-order-search-
tree/>
方法一:中序遍历之后生成新的树
算法
题目要求我们返回按照中序遍历的结果改造而成的、只有右节点的等价二叉搜索树。我们可以进行如下操作:
代码
[sol1-Java]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
| class Solution { public TreeNode increasingBST(TreeNode root) { List<Integer> res = new ArrayList<Integer>(); inorder(root, res);
TreeNode dummyNode = new TreeNode(-1); TreeNode currNode = dummyNode; for (int value : res) { currNode.right = new TreeNode(value); currNode = currNode.right; } return dummyNode.right; }
public void inorder(TreeNode node, List<Integer> res) { if (node == null) { return; } inorder(node.left, res); res.add(node.val); inorder(node.right, res); } }
|
[sol1-JavaScript]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
| var increasingBST = function(root) { const res = []; inorder(root, res);
const dummyNode = new TreeNode(-1); let currNode = dummyNode; for (const value of res) { currNode.right = new TreeNode(value); currNode = currNode.right; } return dummyNode.right; };
const inorder = (node, res) => { if (!node) { return; } inorder(node.left, res); res.push(node.val); inorder(node.right, res); }
|
[sol1-Golang]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
| func increasingBST(root *TreeNode) *TreeNode { vals := []int{} var inorder func(*TreeNode) inorder = func(node *TreeNode) { if node != nil { inorder(node.Left) vals = append(vals, node.Val) inorder(node.Right) } } inorder(root)
dummyNode := &TreeNode{} curNode := dummyNode for _, val := range vals { curNode.Right = &TreeNode{Val: val} curNode = curNode.Right } return dummyNode.Right }
|
[sol1-C++]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| class Solution { public: void inorder(TreeNode *node, vector<int> &res) { if (node == nullptr) { return; } inorder(node->left, res); res.push_back(node->val); inorder(node->right, res); }
TreeNode *increasingBST(TreeNode *root) { vector<int> res; inorder(root, res);
TreeNode *dummyNode = new TreeNode(-1); TreeNode *currNode = dummyNode; for (int value : res) { currNode->right = new TreeNode(value); currNode = currNode->right; } return dummyNode->right; } };
|
[sol1-C]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
| struct TreeNode* createTreeNode(int val) { struct TreeNode* ret = malloc(sizeof(struct TreeNode)); ret->val = val, ret->left = ret->right = NULL; return ret; }
void inorder(struct TreeNode* node, int* res, int* resSize) { if (node == NULL) { return; } inorder(node->left, res, resSize); res[(*resSize)++] = node->val; inorder(node->right, res, resSize); }
struct TreeNode* increasingBST(struct TreeNode* root) { int res[100], resSize = 0; inorder(root, res, &resSize);
struct TreeNode* dummyNode = createTreeNode(-1); struct TreeNode* currNode = dummyNode; for (int i = 0; i < resSize; i++) { currNode->right = createTreeNode(res[i]); currNode = currNode->right; } return dummyNode->right; }
|
复杂度分析
方法二:在中序遍历的过程中改变节点指向
算法
方法一需要遍历一次二叉搜索树以后,然后再创建新的等价的二叉搜索树。事实上,还可以遍历一次输入二叉搜索树,在遍历的过程中改变节点指向以满足题目的要求。
在中序遍历的时候,修改节点指向就可以实现。具体地,当我们遍历到一个节点时,把它的左孩子设为空,并将其本身作为上一个遍历到的节点的右孩子。这里需要有一些想象能力。递归遍历的过程中,由于递归函数的调用栈保存了节点的引用,因此上述操作可以实现。下面的幻灯片展示了这样的过程。
<,,,,,,,,,,,,,,,,,,,,,,,,,,>
代码
[sol2-Java]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| class Solution { private TreeNode resNode;
public TreeNode increasingBST(TreeNode root) { TreeNode dummyNode = new TreeNode(-1); resNode = dummyNode; inorder(root); return dummyNode.right; }
public void inorder(TreeNode node) { if (node == null) { return; } inorder(node.left);
resNode.right = node; node.left = null; resNode = node;
inorder(node.right); } }
|
[sol2-JavaScript]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| var increasingBST = function(root) { const dummyNode = new TreeNode(-1); let resNode = dummyNode; const inorder = (node) => { if (!node) { return; } inorder(node.left);
resNode.right = node; node.left = null; resNode = node;
inorder(node.right); } inorder(root); return dummyNode.right; };
|
[sol2-Golang]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| func increasingBST(root *TreeNode) *TreeNode { dummyNode := &TreeNode{} resNode := dummyNode
var inorder func(*TreeNode) inorder = func(node *TreeNode) { if node == nil { return } inorder(node.Left)
resNode.Right = node node.Left = nil resNode = node
inorder(node.Right) } inorder(root)
return dummyNode.Right }
|
[sol2-C++]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
| class Solution { private: TreeNode *resNode;
public: void inorder(TreeNode *node) { if (node == nullptr) { return; } inorder(node->left);
resNode->right = node; node->left = nullptr; resNode = node;
inorder(node->right); }
TreeNode *increasingBST(TreeNode *root) { TreeNode *dummyNode = new TreeNode(-1); resNode = dummyNode; inorder(root); return dummyNode->right; } };
|
[sol2-C]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
| struct TreeNode* createTreeNode(int val) { struct TreeNode* ret = malloc(sizeof(struct TreeNode)); ret->val = val, ret->left = ret->right = NULL; return ret; }
struct TreeNode* resNode;
void inorder(struct TreeNode* node) { if (node == NULL) { return; } inorder(node->left);
resNode->right = node; node->left = NULL; resNode = node;
inorder(node->right); } struct TreeNode* increasingBST(struct TreeNode* root) { struct TreeNode* dummyNode = createTreeNode(-1); resNode = dummyNode; inorder(root); return dummyNode->right; }
|
复杂度分析